Effect of spermidine on the in vivo degradation of ornithine decarboxylase in Saccharomyces cerevisiae.

نویسندگان

  • R Gupta
  • N Hamasaki-Katagiri
  • C White Tabor
  • H Tabor
چکیده

As part of our studies on the regulation of polyamine biosynthesis in Saccharomyces cerevisiae, we have investigated the effect of spermidine on the degradation of ornithine decarboxylase in this organism. We have found that in S. cerevisiae, as in other eukaryotic cells, the rate of degradation of ornithine decarboxylase, measured either enzymatically or immunologically, is increased by the addition of spermidine to a yeast culture. It is noteworthy that this effect of added spermidine is found even when the experiments are conducted with strains in which the ornithine decarboxylase is overexpressed several hundred-fold more than the wild-type level. The effect of added spermidine in the overexpressed SPE1 strains is best seen in spe2 mutants in which the initial intracellular spermidine is very low or absent. Experiments with cycloheximide show that new protein synthesis is required to effect the breakdown of the ornithine decarboxylase. These results indicate that S. cerevisiae contains an antizyme-like mechanism for the control of the level of ornithine decarboxylase by spermidine, even though, as contrasted with other eukaryotic cells, no specific antizyme homologue has been detected either in in vitro experiments or in the S. cerevisiae genome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome

Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC mo...

متن کامل

2015A Beenukumar Microbial Cell

Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC mo...

متن کامل

Ubiquitin-independent Mechanisms of Mouse Ornithine Decarboxylase Degradation Are Conserved between Mammalian and Fungal Cells*□S

The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that ...

متن کامل

Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells.

The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that ...

متن کامل

Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa.

Neurospora crassa mycelia, when starved for polyamines, have 50-70-fold more ornithine decarboxylase activity and enzyme protein than unstarved mycelia. Using isotopic labeling and immunoprecipitation, we determined the half-life and the synthetic rate of the enzyme in mycelia differing in the rates of synthesis of putrescine, the product of ornithine decarboxylase, and spermidine, the main end...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 19  شماره 

صفحات  -

تاریخ انتشار 2001